skip to main content


Search for: All records

Creators/Authors contains: "Zhang, Xinghang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 9, 2024
  2. Metamaterials present great potential in the applications of solar cells and nanophotonics, such as super lenses and other meta devices, owing to their superior optical properties. In particular, hyperbolic metamaterials (HMMs) with exceptional optical anisotropy offer improved manipulation of light–matter interactions as well as a divergence in the density of states and thus show enhanced performances in related fields. Recently, the emerging field of oxide–metal vertically aligned nanocomposites (VANs) suggests a new approach to realize HMMs with flexible microstructural modulations. In this work, a new oxide–metal metamaterial system, CeO 2 –Au, has been demonstrated with variable Au phase morphologies from nanoparticle-in-matrix (PIM), nanoantenna-in-matrix, to VAN. The effective morphology tuning through deposition background pressure, and the corresponding highly tunable optical performance of three distinctive morphologies, were systematically explored and analyzed. A hyperbolic dispersion at high wavelength has been confirmed in the nano-antenna CeO 2 –Au thin film, proving this system as a promising candidate for HMM applications. More interestingly, a new and abnormal in-plane epitaxy of Au nanopillars following the large mismatched CeO 2 matrix instead of the well-matched SrTiO 3 substrate, was discovered. Additionally, the tilting angle of Au nanopillars, α , has been found to be a quantitative measure of the balance between kinetics and thermodynamics during the depositions of VANs. All these findings provide valuable information in the understanding of the VAN formation mechanisms and related morphology tuning. 
    more » « less
    Free, publicly-accessible full text available July 31, 2024
  3. Heterogenous deformation enables exceptional plasticity in a strong and ductile gradient nanostructured steel. 
    more » « less
    Free, publicly-accessible full text available June 2, 2024
  4. Abstract

    Hyperbolic metamaterials (HMM) possess significant anisotropic physical properties and tunability and thus find many applications in integrated photonic devices. HMMs consisting of metal and dielectric phases in either multilayer or vertically aligned nanocomposites (VAN) form are demonstrated with different hyperbolic properties. Herein, self‐assembled HfO2‐Au/TiN‐Au multilayer thin films, combining both the multilayer and VAN designs, are demonstrated. Specifically, Au nanopillars embedded in HfO2and TiN layers forming the alternative layers of HfO2‐Au VAN and TiN‐Au VAN. The HfO2and TiN layer thickness is carefully controlled by varying laser pulses during pulsed laser deposition (PLD). Interestingly, tunable anisotropic physical properties can be achieved by adjusting the bi‐layer thickness and the number of the bi‐layers. Type II optical hyperbolic dispersion can be obtained from high layer thickness structure (e.g., 20 nm), while it can be transformed into Type I optical hyperbolic dispersion by reducing the thickness to a proper value (e.g., 4 nm). This new nanoscale hybrid metamaterial structure with the three‐phase VAN design shows great potential for tailorable optical components in future integrated devices.

     
    more » « less
  5. Oxide-metal-based hybrid materials have gained great research interest in recent years owing to their potential for multifunctionality, property coupling, and tunability. Specifically, oxide-metal hybrid materials in a vertically aligned nanocomposite (VAN) form could produce pronounced anisotropic physical properties, e.g. , hyperbolic optical properties. Herein, self-assembled HfO 2 -Au nanocomposites with ultra-fine vertically aligned Au nanopillars (as fine as 3 nm in diameter) embedded in a HfO 2 matrix were fabricated using a one-step self-assembly process. The film crystallinity and pillar uniformity can be obviously improved by adding an ultra-thin TiN-Au buffer layer during the growth. The HfO 2 -Au hybrid VAN films show an obvious plasmonic resonance at 480 nm, which is much lower than the typical plasmonic resonance wavelength of Au nanostructures, and is attributed to the well-aligned ultra-fine Au nanopillars. Coupled with the broad hyperbolic dispersion ranging from 1050 nm to 1800 nm in wavelength, and unique dielectric HfO 2 , this nanoscale hybrid plasmonic metamaterial presents strong potential for the design of future integrated optical and electronic switching devices. 
    more » « less